已知一元二次方程有两个不相等的实数根,则k的范围是( )
A.k> B.k<
C.k≤
且k≠0 D.k<
且k≠0
若点(2,5),(4,5)在抛物线y=ax2+bx+c上,则它的对称轴是( ).
A.x= B.x=1 C.x=2 D.x=3
一元二次方程的二次项系数、一次项系数、常数项分别是( )
A. B.
C.
D.
某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
方案2:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图的函数关系。
根据图象回答下列问题:
(1)方案1中每个包装盒的价格是多少元?
(2)方案2中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1,、y2与x的函数表达式;
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由。
阅读理解题: 如图,在△ABC中,AD是BC边上的中线,且AD=BC.
求证:∠BAC=90°.
证明:∵AD=BC,BD=CD=
BC,
∴AD=BD=DC,
∴ADB和 ADC都是等腰三角形
∴∠B=∠BAD,∠C=∠CAD,
∵∠B+∠BAD+∠CAD+∠C=180°,
∴∠BAD+∠CAD=90°,即∠BAC=90°.
(1)此题实际上是直角三角形的另一个判定方法,请你用文字语言叙述出来.
(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为1+,求这个三角形的面积.
【知识储备:勾股定理:在直角三角形中。两直角边的平方和等于斜边的平方。】
某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,求出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.