如图AB是⊙O的直径,弦EF⊥AB于点D,如果EF=10,AD=1,则⊙O半径的长是_ __.

已知扇形的圆心角为900,半径为R,则扇形的弧长为_ __.
使二次根式
有意义自变量x的取值范围为_ __.
计算
_ __.
(14分).如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线L与抛物线交于A、C两点,其中C点的横坐标为2.

(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
(12分)探究:
在矩形ABCD中,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.

(1)如图1,求证:ME=MF;
(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB:AD的值;
(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,直接写出AB、AD满足的数量关系.
