满分5 > 初中数学试题 >

【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点...

【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM

【探究展示】

(1)证明:AM=AD+MC;

(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由

【拓展延伸】

(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明

满分5 manfen5.com

 

 

(1)证明见解析; 成立;证明见解析; (3)①结论AM=AD+MC仍然成立. ②结论AM=DE+BM不成立. 【解析】 试题分析:(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可. (2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可. (3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立. 试题解析:(1)延长AE、BC交于点N,如图1(1), ∵四边形ABCD是正方形, ∴AD∥BC. ∴∠DAE=∠ENC. ∵AE平分∠DAM, ∴∠DAE=∠MAE. ∴∠ENC=∠MAE. ∴MA=MN. 在△ADE和△NCE中, , ∴△ADE≌△NCE(AAS). ∴AD=NC. ∴MA=MN=NC+MC=AD+MC. (2)AM=DE+BM成立. 过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示. ∵四边形ABCD是正方形, ∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC. ∵AF⊥AE, ∴∠FAE=90°. ∴∠FAB=90°﹣∠BAE=∠DAE. 在△ABF和△ADE中, , ∴△ABF≌△ADE(ASA). ∴BF=DE,∠F=∠AED. ∵AB∥DC, ∴∠AED=∠BAE. ∵∠FAB=∠EAD=∠EAM, ∴∠AED=∠BAE=∠BAM+∠EAM =∠BAM+∠FAB =∠FAM. ∴∠F=∠FAM. ∴AM=FM. ∴AM=FB+BM=DE+BM. (3)①结论AM=AD+MC仍然成立. 延长AE、BC交于点P,如图2(1), ∵四边形ABCD是矩形, ∴AD∥BC. ∴∠DAE=∠EPC. ∵AE平分∠DAM, ∴∠DAE=∠MAE. ∴∠EPC=∠MAE. ∴MA=MP. 在△ADE和△PCE中, , ∴△ADE≌△PCE(AAS). ∴AD=PC. ∴MA=MP=PC+MC =AD+MC. ②结论AM=DE+BM不成立. 假设AM=DE+BM成立. 过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示. ∵四边形ABCD是矩形, ∴∠BAD=∠D=∠ABC=90°,AB∥DC. ∵AQ⊥AE, ∴∠QAE=90°. ∴∠QAB=90°﹣∠BAE=∠DAE. ∴∠Q=90°﹣∠QAB =90°﹣∠DAE =∠AED. ∵AB∥DC, ∴∠AED=∠BAE. ∵∠QAB=∠EAD=∠EAM, ∴∠AED=∠BAE=∠BAM+∠EAM =∠BAM+∠QAB =∠QAM. ∴∠Q=∠QAM. ∴AM=QM. ∴AM=QB+BM. ∵AM=DE+BM, ∴QB=DE. 在△ABQ和△ADE中, , ∴△ABQ≌△ADE(AAS). ∴AB=AD. 与条件“AB≠AD“矛盾,故假设不成立. ∴AM=DE+BM不成立. 考点:1、角平分线的定义;2、平行线的性质;3、全等三角形的判定与性质;4、矩形及正方形的性质.  
复制答案
考点分析:
相关试题推荐

在崇仁一中中学生篮球赛中,小方共打了10场球他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高如果他所参加的10场比赛的平均得分超过18分

(1)用含x的代数式表示y;

(2)小方在前5场比赛中,总分可达到的最大值是多少?

(3)小方在第10场比赛中,得分可达到的最小值是多少?

 

查看答案

已知等腰Rt△ABC和等腰Rt△AED中,∠AED=∠ACB=90°,点D在AB上,M为DB的中点,连接EC,N是EC的中点,连接DN并延长交AC于点F

求证:(1)满分5 manfen5.com满分5 manfen5.com

(2)满分5 manfen5.com

学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

 

 

查看答案

某商店经销一种庐山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元

(1)求该种纪念品4月份的销售价格;

(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?

 

查看答案

已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,添加一个条件:____________,

可以得到DF=BE,DF∥BE证明你的判断

满分5 manfen5.com

 

 

查看答案

ABC在平面直角坐标系中的位置如图所示

(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1;并写出点C1的坐标;

(2)将△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.