满分5 > 初中数学试题 >

如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻...

如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).

满分5 manfen5.com

(1)求直线BD和抛物线的解析式.

(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与MCD相似,求所有满足条件的点N的坐标.

(3)在抛物线上是否存在点P,使SPBD=6?若存在,求出点P的坐标;若不存在,说明理由.

 

(1)直线BD的解析式为:y=﹣x+3,抛物线的解析式为:y=x2﹣4x+3; (2)满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3); (3)在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8). 【解析】 试题分析:(1)由待定系数法求出直线BD和抛物线的解析式; (2)首先确定△MCD为等腰直角三角形,因为△BND与△MCD相似,所以△BND也是等腰直角三角形.如答图1所示,符合条件的点N有3个; (3)如答图2、答图3所示,解题关键是求出△PBD面积的表达式,然后根据S△PBD=6的已知条件,列出一元二次方程求解. 试题解析:(1)∵直线l:y=3x+3与x轴交于点A,与y轴交于点B, ∴A(﹣1,0),B(0,3); ∵把△AOB沿y轴翻折,点A落到点C,∴C(1,0). 设直线BD的解析式为:y=kx+b, ∵点B(0,3),D(3,0)在直线BD上, ∴, 解得k=﹣1,b=3, ∴直线BD的解析式为:y=﹣x+3. 设抛物线的解析式为:y=a(x﹣1)(x﹣3), ∵点B(0,3)在抛物线上, ∴3=a×(﹣1)×(﹣3), 解得:a=1, ∴抛物线的解析式为:y=(x﹣1)(x﹣3)=x2﹣4x+3; (2)抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1, ∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1). 直线BD:y=﹣x+3与抛物线的对称轴交于点M,令x=2,得y=1, ∴M(2,1). 设对称轴与x轴交点为点F,则CF=FD=MF=1, ∴△MCD为等腰直角三角形. ∵以点N、B、D为顶点的三角形与△MCD相似, ∴△BND为等腰直角三角形. 如答图1所示: (I)若BD为斜边,则易知此时直角顶点为原点O, ∴N1(0,0); (II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上, ∵OB=OD=ON2=3, ∴N2(﹣3,0); (III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上, ∵OB=OD=ON3=3, ∴N3(0,﹣3). ∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3); (3)假设存在点P,使S△PBD=6,设点P坐标为(m,n). (I)当点P位于直线BD上方时,如答图2所示: 过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3. S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6, 化简得:m+n=7 ①, ∵P(m,n)在抛物线上, ∴n=m2﹣4m+3, 代入①式整理得:m2﹣3m﹣4=0, 解得:m1=4,m2=﹣1, ∴n1=3,n2=8, ∴P1(4,3),P2(﹣1,8); (II)当点P位于直线BD下方时,如答图3所示: 过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n. S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6, 化简得:m+n=﹣1 ②, ∵P(m,n)在抛物线上, ∴n=m2﹣4m+3, 代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解. 故此时点P不存在. 综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8). 考点:二次函数综合题.  
复制答案
考点分析:
相关试题推荐

如图,一条笔直的公路上有A、B、C三地,B、C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A地的距离y1、y2(千米)与行驶时间x(时)的关系如图所示.根据图象进行以下探究:

满分5 manfen5.com

满分5 manfen5.com

(1)请在图中标出A地的位置,并作简要的文字说明;

(2)求图中M点的坐标,并解释该点的实际意义;

(3)在图中补全甲车的函数图象,求甲车到A地的距离y1与行驶时间x的函数关系式;

(4)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.

 

查看答案

如图,在ABC中,C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.

满分5 manfen5.com

(1)当t为何值时,AMN=ANM?

(2)当t为何值时,AMN的面积最大?并求出这个最大值.

 

查看答案

如图,AB是O的直径,C是半圆O上的一点,AC平分DAB,ADCD,垂足为D,AD交O于E,连接CE.

满分5 manfen5.com

(1)判断CD与O的位置关系,并证明你的结论;

(2)若E是弧AC的中点,O的半径为1,求图中阴影部分的面积.

 

查看答案

如图,在直角坐标系xOy中,直线满分5 manfen5.com与双曲线满分5 manfen5.com相交于满分5 manfen5.com、B满分5 manfen5.com两点,矩形满分5 manfen5.com的边满分5 manfen5.com恰好被点满分5 manfen5.com平分,边满分5 manfen5.com交双曲线于满分5 manfen5.com点,四边形满分5 manfen5.com的面积为2.

(1)求n的值;

(2)求不等式满分5 manfen5.com的解集

 

查看答案

如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:满分5 manfen5.com,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:满分5 manfen5.com≈1.414, 满分5 manfen5.com≈1.732)

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.