如图,BC是半⊙O的直径,点P是半圆弧的中点,点A是弧BP的中点,AD⊥BC于D,连结AB、PB、AC,BP分别与AD、AC相交于点E、F.
(1)BE与EF相等吗?并说明理由;
(2)小李通过操作发现CF=2AB,请问小李的发现是否正确,若正确,请说明理由;若不正确,请写出CF与AB正确的关系式.
(3)求
的值.

如图,在平面直角坐标系中,反比例函数
的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(-2,4).
(1)直接写出A、B、D三点的坐标;
(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足
的x取值范围.

如图,矩形ABCD中,对角线AC、BD交于点O,DE∥AC,CE∥BD。
(1)试判断四边形OCED是何种特殊四边形,并加以证明.
(2)若∠OAD=300,F、G分别在OD、DE上,OF=DG,连结CF、CG、FG, 判断△CFG形状,并加以证明.

如图,某人在D处测得山顶C的仰角为37o,向前走200米来到山脚A处,测得山坡AC的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,参考数据:
).

果农李明种植的草莓计划以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克9.6元的单价对外批发销售.
(1)求李明平均每次下调的百分率;
(2)小刘准备到李明处购买3吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金400元.
试问小刘选择哪种方案更优惠,请说明理由.
一个不透明的布袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球1个,蓝球2个,黄球若干个,现从中任意摸出一个球是蓝球的概率为
.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是蓝球的概率;
