满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE...

如图1,在RtABC中,ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且DOE=B.

(1)证明COF是等腰三角形,并求出CF的长;

(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,OMN与BCO相似?

满分5 manfen5.com

 

 

(1)证明见解析. .(2)当CM的长是或时,△OMN与△BCO相似. 【解析】 试题分析:(1)易证∠OCB=∠B,由条件∠DOE=∠B可得∠OCB=∠DOE,从而得到△COF是等腰三角形,过点F作FH⊥OC,垂足为H,如图1,由等腰三角形的三线合一可求出CH,易证△CHF∽△BCA,从而可求出CF长. (2)题中要求“△OMN与△BCO相似”,并没有指明对应关系,故需分情况讨论,由于∠DOE=∠B,因此△OMN中的点O与△BCO中的点B对应,因而只需分两种情况讨论:①△OMN∽△BCO,②△OMN∽△BOC.当△OMN∽△BCO时,可证到△AOM∽△ACB,从而求出AM长,进而求出CM长;当△OMN∽△BOC时,可证到△CON∽△ACB,从而求出ON,CN长.然后过点M作MG⊥ON,垂足为G,如图3,可以求出NG.并可以证到△MGN∽△ACB,从而求出MN长,进而求出CM长. 试题解析:(1)∵∠ACB=90°,点O是AB的中点, ∴OC=0B=OA=5. ∴∠OCB=∠B,∠ACO=∠A. ∵∠DOE=∠B, ∴∠FOC=∠OCF. ∴FC=FO. ∴△COF是等腰三角形. 过点F作FH⊥OC,垂足为H,如图1, ∵FC=FO,FH⊥OC, ∴CH=OH=,∠CHF=90°. ∵∠HCF=∠B,∠CHF=∠BCA=90°, ∴△CHF∽△BCA. ∴. ∵CH=,AB=10,BC=6, ∴CF=. ∴CF的长为. (2)①若△OMN∽△BCO,如图2, 则有∠NMO=∠OCB. ∵∠OCB=∠B, ∴∠NMO=∠B. ∵∠A=∠A, ∴△AOM∽△ACB. ∴. ∵∠ACB=90°,AB=10,BC=6, ∴AC=8. ∵AO=5,AC=8,AB=10, ∴AM=. ∴CM=AC-AM=. ②若△OMN∽△BOC,如图3, 则有∠MNO=∠OCB. ∵∠OCB=∠B, ∴∠MNO=∠B. ∵∠ACO=∠A, ∴△CON∽△ACB. ∴. ∵BC=6,AB=10,AC=8,CO=5, ∴ON=,CN=. 过点M作MG⊥ON,垂足为G,如图3, ∵∠MNO=∠B,∠MON=∠B, ∴∠MNO=∠MON. ∴MN=MO. ∵MG⊥ON,即∠MGN=90°, ∴NG=OG=. ∵∠MNG=∠B,∠MGN=∠ACB=90°, ∴△MGN∽△ACB. ∴. ∵GN=,BC=6,AB=10, ∴MN=. ∴CM=CN-MN=-=. ∴当CM的长是或时,△OMN与△BCO相似. 【考点】1.圆的综合题;2.全等三角形的判定与性质;3.直角三角形斜边上的中线;4.勾股定理;5.相似三角形的判定与性质.  
复制答案
考点分析:
相关试题推荐

已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.

(1)当直线CD与半圆O相切时(如图),求ODC的度数;

(2)当直线CD与半圆O相交时(如图),设另一交点为E,连接AE,若AEOC,

AE与OD的大小有什么关系?为什么?

ODC的度数.

满分5 manfen5.com

 

 

查看答案

为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.

(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;

(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?

 

查看答案

某学校在开展“书香校园”活动期间,对学生课外阅读的喜好进行抽样调查(每人只选一种书籍),将调查结果绘制成如图所示的两幅不完整的统计图,根据图中的信息,解答下列问题:

(1)这次调查的学生人数为  人,扇形统计图中m的值为  

(2)补全条形统计图;

(3)如果这所学校要添置学生课外阅读的书籍1500册,请你估计“科普”类书籍应添置多少册比较合适?

满分5 manfen5.com

 

 

查看答案

如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB是6米,要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?

(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

满分5 manfen5.com

 

 

查看答案

如图,一次函数y=x+b的图象与反比例函数y=满分5 manfen5.com(x>0)的图象交于点A(2,1),与x轴交于点B.

(1)求k和b的值;

(2)连接OA,求AOB的面积.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.