满分5 > 初中数学试题 >

如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在B...

如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).

第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;

第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;

依次操作下去…

(1)图2中的EFD是经过两次操作后得到的,其形状为   ,求此时线段EF的长;

(2)若经过三次操作可得到四边形EFGH.

请判断四边形EFGH的形状为    ,此时AE与BF的数量关系是    

中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;

(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.

满分5 manfen5.com

 

 

(1)△DEF为等边三角形,EF的长为4﹣4. (2)①四边形EFGH的形状为正方形,此时AE=BF. ②y=2x2﹣8x+16(0<x<4),y的取值范围为:8≤y<16. (3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4. 【解析】 试题分析:(1)根据旋转的性质,易知△EFD是等边三角形;利用等边三角形的性质、勾股定理即求出EF的长; (2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF; ②求出面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围. (3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4 试题解析:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形. 在Rt△ADE与Rt△CDF中, ∴Rt△ADE≌Rt△CDF(HL) ∴AE=CF. 设AE=CF=x,则BE=BF=4﹣x ∴△BEF为等腰直角三角形. ∴EF=BF=(4﹣x). ∴DE=DF=EF=(4﹣x). 在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2, 解得:x1=8﹣4,x2=8+4(舍去) ∴EF=(4﹣x)=4﹣4. DEF的形状为等边三角形,EF的长为4﹣4. (2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下: 依题意画出图形,如答图1所示: 由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形. ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3. ∵∠3+∠4=90°,∠2+∠3=90°, ∴∠2=∠4. ∵EF=EH ∴△AEH≌△BFE(ASA) ∴AE=BF. ②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形, ∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x. ∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16. ∴y=2x2﹣8x+16(0<x<4) ∵y=2x2﹣8x+16=2(x﹣2)2+8, ∴当x=2时,y取得最小值8;当x=0时,y=16, ∴y的取值范围为:8≤y<16. (3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4. 如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形. 设边长EF=FG=x,则BF=CG=x, BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4. 考点:1、旋转的性质;2、正方形;3、勾股定理;4、二次函数  
复制答案
考点分析:
相关试题推荐

如图1,AB是O的直径,点C在AB的延长线上,AB=4,BC=2,P是O上半部分的一个动点,连接OP,CP.

(1)求OPC的最大面积;

(2)求OCP的最大度数;

(3)如图2,延长PO交O于点D,连接DB,当CP=DB时,求证:CP是O的切线.

满分5 manfen5.com

 

 

查看答案

图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.

(1)连接CD,EB,猜想它们的位置关系并加以证明;

(2)求A,B两点之间的距离(结果取整数,可以使用计算器)

(参考数据:满分5 manfen5.com≈1.41,满分5 manfen5.com≈1.73,满分5 manfen5.com≈2.45)

满分5 manfen5.com

 

 

查看答案

某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:

某校初中生阅读数学教科书情况统计图表

类别

人数

占总人数比例

重视

a

0.3

一般

57

0.38

不重视

b

c

说不清楚

9

0.06

 

(1)求样本容量及表格中a,b,c的值,并补全统计图;

(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;

(3)根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;

如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?

满分5 manfen5.com

 

 

查看答案

如图,在平面直角坐标系中,RtPBD的斜边PB落在y轴上,tanBPD=满分5 manfen5.com.延长BD交x轴于点C,过点D作DAx轴,垂足为A,OA=4,OB=3.

(1)求点C的坐标;

(2)若点D在反比例函数y=满分5 manfen5.com(k>0)的图象上,求反比例函数的解析式.

满分5 manfen5.com

 

 

查看答案

有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.

(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)

(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.

若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?

若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.