如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )

A.同位角相等,两直线平行 B.内错角相等,两直线平行
C.两直线平行,同位角相等 D.两直线平行,内错角相等
一个代数式的值不能等于0,那么它是( )
A.
B.
C.
D.![]()
估计
在( )
A.0~1之间 B.1~2之间 C.2~3之间 D.3~4之间
如图,抛物线
与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线
于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线
的对称点
的坐标,判定点
是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段
于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

阅读材料:
已知,如图(1),在面积为S的△ABC中, BC=a,AC=b, AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
∵
.
∴
.

(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求
的值.
在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.
名称 | 四等分圆的面积 | ||
方案 | 方案一 | 方案二 | 方案三 |
选用的工具 | 带刻度的三角板 | 量角器 | 带刻度的三角板、圆规 |
画出示意图 |
|
|
|
简述设计方案 | 作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份. |
|
|
指出对称性 | 既是轴对称图形又是中心对称图形 |
|
|
