满分5 > 初中数学试题 >

如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交A...

如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.

(1)①∠MPN=          

②求证:PM+PN=3a;

(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;

(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

满分5 manfen5.com

 

 

(1)①60°,②证明见解析; (2)证明见解析; (3)四边形MONG是菱形,理由见解析. 【解析】 试题分析:(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解, (2)连接OE,由△OMA≌△ONE证明, (3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形. 试题解析:(1)①∵四边形ABCDEF是正六边形, ∴∠A=∠B=∠C=∠D=∠E=∠F=120°. 又∴PM∥AB,PN∥CD, ∴∠BPM=60°,∠NPC=60°, ∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°, 故答案为;60°. ②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K, MP+PN=MG+GH+HP+PL+LK+KN. ∵正六边形ABCDEF中,PM∥AB,作PN∥CD, ∵∠AMG=∠BPH=∠CPL=∠DNK=60°, ∴, ∵AM=BP,PC=DN, ∴MG+HP+PL+KN=a,GH=LK=a, ∴MP+PN=MG+GH+HP+PL+LK+KN=3a. (2)如图2,连接OE, ∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC, ∴AM=BP=EN, 又∵∠MAO=∠NOE=60°,OA=OE, 在△ONE和△OMA中, , ∴△OMA≌△ONE(SAS), ∴OM=ON. (3)如图3,连接OE, 由(2)得,△OMA≌△ONE, ∴∠MOA=∠EON, ∵EF∥AO,AF∥OE, ∴四边形AOEF是平行四边形, ∴∠AFE=∠AOE=120°, ∴∠MON=120°, ∴∠GON=60°, ∵∠GON=60°-∠EON,∠DON=60°-∠EON, ∴∠GOE=∠DON, ∵OD=OE,∠ODN=∠OEG, 在△GOE和∠DON中, , ∴△GOE≌△NOD(ASA), ∴ON=OG, 又∵∠GON=60°, ∴△ONG是等边三角形, ∴ON=NG, 又∵OM=ON,∠MOG=60°, ∴△MOG是等边三角形, ∴MG=GO=MO, ∴MO=ON=NG=MG, ∴四边形MONG是菱形. 考点:四边形综合题.  
复制答案
考点分析:
相关试题推荐

若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。

(1)请写出两个为“同簇二次函数”的函数;

(2)已知关于x的二次函数y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的最大值。

 

查看答案

如图,管中放置着三根同样的绳子AA1、BB1、CC1

(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?

(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.

满分5 manfen5.com

 

 

查看答案

2013年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,

(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

(2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

 

查看答案

如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.

满分5 manfen5.com

 

 

查看答案

如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.