如图,点
在线段
上,
,
,
.求证:
.

在平面直角坐标系
中,对于点
,我们把点
叫做点
的伴随点,已知点
的伴随点为
,点
的伴随点为
,点
的伴随点为
,…,这样依次得到点
,
,
,…,
,….若点
的坐标为(3,1),则点
的坐标为 ,点
的坐标为 ;若点
的坐标为(
,
),对于任意的正整数
,点
均在
轴上方,则
,
应满足的条件为 .
如图,在平面直角坐标系
中,正方形
的边长为2.写出一个函数
,使它的图象与正方形
有公共点,这个函数的表达式为 .

在某一时刻,测得一根高为
m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为 m.
分解因式:
.
已知点
为某封闭图形边界上一定点,动点
从点
出发,沿其边界顺时针匀速运动一周.设点
运动的时间为
,线段
的长为
.表示
与
的函数关系的图象大致如右图所示,则该封闭图形可能是


