已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E,联结AC、DF,∠A=∠D.
求证:AB=DE.

已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为 .

若把代数式
化为
的形式,其中m,k为常数,则m+k= .
分解因式:
= .
若二次根式
有意义,则x的取值范围是 .
若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有18个,且具有“波动性质”,则这18个数的和为( )
A.-64 B.0 C.18 D.64
