下列命题中,正确命题的序号是
①一组对边平行且相等的四边形是平行四边形
②一组邻边相等的平行四边形是正方形
③对角线互相垂直且相等的四边形是菱形
④任何三角形都有外接圆,但不是所有的四边形都有外接圆
A.①② B.②③ C.③④ D.①④
已知x=1是一元二次方程x2-2mx+1=0的解,则m的值是
A.-1 B.0 C.1 D.0或1
下列计算正确的是
A.
B.
C.
D.![]()
如图,在△ABC中,AB=AC=4cm,∠BAC=90°.动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t s,四边形APQC的面积为y cm2.

(1)当t为何值时,△PBQ是直角三角形?
(2)①求y与t的函数关系式,并写出t的取值范围;
②当t为何值时,y取得最小值?最小值为多少?
(3)设PQ的长为x cm,试求y与x的函数关系式.
商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
| 每天的销售量/台 | 每台销售利润/元 |
降价前 | 8 | 400 |
降价后 |
|
|
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?
如图,AB是⊙O的直径,弦CD⊥AB于H.点G在⊙O上,过点G作直线EF,交CD延长线于点E,交AB的延长线于点F.连接AG交CD于K,且KE=GE.

(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若AC∥EF,
,FB=1,求⊙O的半径.
