某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛成绩.
| 1号 | 2号 | 3号 | 4号 | 5号 | 总数 |
甲班 | 100 | 98 | 102 | 97 | 103 | 500 |
乙班 | 99 | 100 | 95 | 109 | 97 | 500 |
经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.
请你回答下列问题:
(1)甲乙两班的优秀率分别为 、 ;
(2)计算两班比赛数据的方差;
(3)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.
如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.

(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)已知:AB=16,CD=4.求(1)中所作圆的半径.
如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=
,AD=4.

(1)求BC的长;
(2)求tan∠DAE的值.
在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.

(1)求证:△ADE≌△CBF;
(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.
(1)计算:
;(2)用配方法解方程:x2-2x-1=0.
如图,在等腰Rt△ABC中,∠A=90°,AC=7,点O在AC上,且AO=2,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转90°,得到线段OD,要使点D恰好落在BC上,则AP的长等于 .

