满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为...

如图,抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

满分5 manfen5.com

(1)求抛物线与x轴的另一个交点B的坐标;

(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.若以AB为一底边的梯形ABCD的面积为9.

求此抛物线的解析式,并指出顶点E的坐标;

(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.

①当t为    秒时,△PAD的周长最小?当t为      秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)

②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

 

(1) B(﹣3,0); (2)y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1); (3)①2;4或4﹣或4+;  ②存在一点P,使△PAD是以AD为斜边的直角三角形, P(﹣2,1)或(﹣2,2). 【解析】 试题分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标; (2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标; (3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值; ②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标. 试题解析:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0); (2)设抛物线的对称轴交CD于点M,交AB于点N, 由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM. ∵MN∥y轴,AB∥CD, ∴四边形ODMN是矩形. ∴DM=ON=2, ∴CD=2×2=4. ∵A(﹣1,0),B(﹣3,0), ∴AB=2, ∵梯形ABCD的面积=(AB+CD)•OD=9, ∴OD=3,即c=3. ∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得, 解得. ∴y=x2+4x+3. 将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1); (3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形. 故答案为:2;4或4﹣或4+. ②存在. ∵∠APD=90°,∠PMD=∠PNA=90°, ∴∠DPM+∠APN=90°,∠DPM+∠PDM=90°, ∴∠PDM=∠APN, ∵∠PMD=∠ANP, ∴△APN∽△PDM, ∴, ∴, ∴PN2﹣3PN+2=0, ∴PN=1或PN=2. ∴P(﹣2,1)或(﹣2,2). 考点:二次函数综合题.
复制答案
考点分析:
相关试题推荐

如图,已知在⊙O中,AB= 4满分5 manfen5.com,AC是⊙O的直径,AC⊥BD于F,∠A=30°.

满分5 manfen5.com

⑴求图中阴影部分的面积;

⑵若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥底面圆的半径.

 

查看答案

某商场购进一种新商品,每件进价是120元,在试销期间发现,当每件商品售价130元时,每天可销售70件,当每件商品售高(或低)于130元时,每涨(或降)价1元,日销售量就减少(或增加)1件.据此规律,请回答:

⑴当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?

⑵在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价—进价)

 

查看答案

下图表示的是聪聪从自已家到叔叔家,再到奶奶家的路线图.

满分5 manfen5.com

由图中可以看到:从聪聪家到叔叔家有4条路,从叔叔家到奶奶家有2条路.你能求出从聪聪家到奶奶家始终利用一种交通工具的路线概率吗?请用树状图表示.

 

查看答案

如图所示,点O、B坐标分别为(0,0)、(3,0),将△ABO绕点O按逆时针方向旋转90°得到△OA'B';

满分5 manfen5.com

⑴根据题中条件在图中画出直角坐标系,并画出△OA′B′;

⑵点A′的坐标是          

⑶求BB′的长;

 

查看答案

如图是庐江中学某景点内的一个拱门,它是⊙O的一部分.已知拱门的地面宽度CD=2m,它的最大高度EM=3m,求构成该拱门的⊙O的半径.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.