(1)、动手操作:
如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点
处,折痕为EF,若∠ABE=20°,那么
的度数为 .
(2)、观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.

(3)、实践与运用:
将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.

甲、乙两支仪仗队队员的身高(单位:厘米)如下:
甲队:178,177,179,178,177,178,177,179,178,179;
乙队:178,179,176,178,180,178,176,178,177,180;
(1)将下表填完整:
|
身高(厘米) |
176 |
177 |
178 |
179 |
180 |
|
甲队(人数) |
0 |
3 |
4 |
|
0 |
|
乙队(人数) |
2 |
1 |
|
1 |
|
(2)甲队队员身高的平均数为 厘米,乙队队员身高的平均数为 厘米;
(3)你认为哪支仪仗队身高更为整齐?请从方差的角度说明理由。
解方程:
(1)x2﹣4x+1=0
(2)2=2
计算:
(1)![]()
(2)![]()
我们知道,一元二次方程
没有实数根,即不存在一个实数的平方等于
.若我们规定一个新数“
”,使其满足
(即方程
有一个根为
).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有
,从而对于任意正整数
,我们可以得到
,同理可得
,
,
.那么
的值为 .
如图,在Rt△AOB中,OA=OB=3
,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为
.

