问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;

(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.

问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

如图,在⊙O中,∠ACB=∠BDC=60°,AC=![]()

(1)求∠BAC的度数;
(2)求⊙O的周长.
如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810 m2,为什么?
动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(见方案二).

(1)你能说出小颖、小明所折出的菱形的理由吗?
(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?
如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于C,交弦AB于D.

(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹);
(2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.
二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)b= ,c= ;
(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;
|
x |
… |
|
|
|
|
|
… |
|
y |
… |
|
|
|
|
|
… |
(3)若将此图象沿x轴向左平移3个单位,直接写出平移后图象所对应的函数关系式 .

