满分5 > 初中数学试题 >

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC...

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

满分5 manfen5.com

(1)求证:CD为⊙O的切线;

(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

 

(1)详见解析;(2)6 【解析】 试题分析:(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线; (2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长. 试题解析:(1)连接OC, ∵OA=OC, ∴∠OCA=∠OAC, ∵AC平分∠PAE, ∴∠DAC=∠CAO, ∴∠DAC=∠OCA, ∴PB∥OC, ∵CD⊥PA, ∴CD⊥OC,CO为⊙O半径, ∴CD为⊙O的切线; (2)过O作OF⊥AB,垂足为F, ∴∠OCD=∠CDA=∠OFD=90°, ∴四边形DCOF为矩形, ∴OC=FD,OF=CD. ∵DC+DA=6, 设AD=x,则OF=CD=6-x, ∵⊙O的直径为10, ∴DF=OC=5, ∴AF=5-x, 在Rt△AOF中,由勾股定理得AF2+OF2=OA2. 即(5-x)2+(6-x)2=25, 化简得x2-11x+18=0, 解得x1=2,x2=9. ∵CD=6-x大于0,故x=9舍去, ∴x=2, 从而AD=2,AF=5-2=3, ∵OF⊥AB,由垂径定理知,F为AB的中点, ∴AB=2AF=6. 考点:1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理
复制答案
考点分析:
相关试题推荐

西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg.为了尽快售出,该经营户决定降价促销,经调查发现,这种小型西瓜每降价0.1元/kg,每天可多售出40kg.另外,经营期间每天还需支出固定成本24元.该经营户要想每天至少盈利200元,应将每千克小型西瓜的售价降低多少元?

 

查看答案

已知二次函数满分5 manfen5.com

满分5 manfen5.com

(1)求抛物线顶点M的坐标;

(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;

(3)根据图象,求不等式满分5 manfen5.com的解集.

 

查看答案

已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.

满分5 manfen5.com

①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.

 

查看答案

如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1

满分5 manfen5.com

(1)在网格中画出△A1OB1,并标上字母;

(2)点A关于O点中心对称的点的坐标为          

(3)点A1的坐标为           

(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为   

 

查看答案

如图,在平面直角坐标系xOy中,抛物线满分5 manfen5.com的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

满分5 manfen5.com

(1)当m=2时,求点B的坐标;

(2)求DE的长?

(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.