下列函数中,当
时,
随
的增大而增大的是( )
A.
B.
C.
D.![]()
若二次函数
的图象经过点P(-2,4),则该图象必经过点( )
A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)
抛物线
的顶点坐标是( )
A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)
如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).

(1)写出抛物线的对称轴与x轴的交点坐标;
(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;
(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.
已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.

(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
联想三角形外心的概念,我们可引入如下概念:定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=
,求∠APB的度数.
(2)探究:如图3,已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.

