某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表表示:
|
等级(x级) |
一级 |
二级 |
三级 |
… |
|
生产量(y台/天) |
78 |
76 |
74 |
… |
(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出与
之间的函数关系式:_____;
(2)每台护眼灯可获利z(元)关于等级x(级)的函数关系式:______;
(3)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.

(1)求证:∠BCA=∠BAD;
(2)求DE的长;
(3)求证:BE是⊙O的切线.
已知抛物线
(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
|
x |
… |
―1 |
0 |
3 |
… |
|
|
… |
0 |
|
0 |
… |
(1)求y1与x之间的函数关系式;
(2)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).
①求y2与x之间的函数关系式;
②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.
小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).

为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲无放回摸两次,每次摸出一个球;再把甲摸出的两个球同时放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.
(1)(4分)运用列表或画树状图求甲得1分的概率;
(2)(4分)这个游戏是否公平?请说明理由.
阅读下面的材料,先完成阅读填空,再将要求答题:
,则
;①
,则
;②
,则
.③
……
观察上述等式,猜想:对任意锐角
,都有
.④
(1)(3分)如图,在锐角三角形
中,利用三角函数的定义及勾股定理对
证明你的猜想

(3分)已知:
为锐角
且
,求
.
