已知关于
的一元二次方程
.
(1)若
是该方程的一个根,求
的值;
(2)无论
取任何值,该方程的根不可能为
,写出
的值,并证明;
(3)若
为正整数,且该方程存在正整数解,求所有正整数
的值.
下面四张扑克牌中,图案属于中心对称的是( )
A.
B.
C.
D.
如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.

(1)求⊙O的半径;
(2)求证:CE=BE.
已知:如图,在平面直角坐标系
中,抛物线
过点A(6,0)和点B(3,
).

(1)求抛物线
的解析式;
(2)将抛物线
沿x轴翻折得抛物线
,求抛物线
的解析式;
(3)在(2)的条件下,抛物线
上是否存在点M,使
与
相似?如果存在,求出点M的坐标;如果不存在,说明理由.
如图,
和
都是以A为直角顶点的等腰直角三角形,连结BD,BE,CE,延长CE交AB于点F,交BD于点G.

(1)求证:
;
(2)若
是边长可变化的等腰直角三角形,并将
绕点
旋转,使CE的延长线始终与线段BD(包括端点B、D)相交.当
为等腰直角三角形时,求出
的值.
矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线
与BC边相交于点D.

(1)求点D的坐标;
(2)若抛物线
经过A、D两点,试确定此抛物线的解析式;
(3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.
