已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.则
(填“<”或“=”或“>”);
(2)如图2,若四边形ABCD是平行四边形,试探究:
当∠B与∠EGC满足什么关系时,使得
=
成立?并证明你的结论;
(3)如图3,若BA=BC= 3,DA=DC= 4,∠BAD= 90°,DE⊥CF.则
的值为 .

图1 图2 图3
在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.
(1)直接写出y与x之间的函数关系式y= .
(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?
如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点,(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.

(1)点D在线段PQ上,且DQ=DC.求证:CD是⊙O的切线;
(2)若sinQ=
,BP=6,AP=
,求QC的长.
已知二次函数
为常数,且
.
(1)求证:不论
为何值,该函数的图象与
轴总有两个公共点;
(2)设该函数的图象的顶点为C,与
轴交于A,B两点,当△ABC的面积等于2时,求
的值.
如图,⊙O是Rt
ABC的外接圆,∠ABC=90°,AC=13,BC=5,弦BD=BA,BE⊥DC交DC的延长线于点E.

(1)求证:∠BCA=∠BAD;
(2)求DE的长.
如图,已知
,
,
是平面直角坐标系中三点.

(1)请你画出
ABC关于原点O对称的
A1B1C1;
(2)请写出点A关于y轴对称的点A2的坐标.若将点A2向上平移h个单位,使其落在
A1B1C1内部,指出h的取值范围.
