在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是

A.① B.② C.③ D.④
如图,⊙O的直径AB=4,点C在⊙O上,如果∠ABC=30°,那么AC的长是

A.1
B.
C.
D.2
在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是
A.
B.
C.
D.
![]()
已知⊙O1和⊙O2的半径分别为3和5,如果O1O2=8,那么⊙O1和⊙O2的位置关系是
A.外切 B. 相交 C. 内切 D. 内含
在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).

(1)求m的值及点A的坐标;
(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.
①当点E′落在该二次函数的图象上时,求AA′的长;
②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;
③当A′B+BE′取得最小值时,求点E′的坐标.
如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90º,∠B=∠E=30º.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时,填空:


线段DE与AC的位置关系是 ;
设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是 ,证明你的结论;
猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AE中BC,CE边上的高,请你证明小明的猜想.

