满分5 >
初中数学试题 >
无论m为任何实数,二次函数y=x2+(2-m)x+m的图象总过的点是( ) A....
无论m为任何实数,二次函数y=x2+(2-m)x+m的图象总过的点是( )
A.(1,3)
B.(1,0)
C.(-1,3)
D.(-1,0)
考点分析:
相关试题推荐
已知二次函数y=x
2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )
A.m≥

B.m>

C.m≤

D.m<
查看答案
抛物线y=x
2+1的图象大致是( )
A.

B.

C.

D.
查看答案
二次函数y=x
2+2x-5取最小值时,自变量x的值是( )
A.2
B.-2
C.1
D.-1
查看答案
如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A
1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB
1交DE于点H,请证明:AH﹦DH.
查看答案
菱形以特殊的对称美而受人们的喜爱,在生产生活中有其广泛的应用,张伟同学家里有一面长4.2m、宽2.8m的墙壁准备装修,现有如图甲所示的型号瓷砖,其形状是一块长30cm、宽20cm的矩形,点E、F、G、H分别是边DA、AB、BC、CD的中点,阴影部分为淡蓝色花纹,中间部分为白色,解答下列各问:


(1)张伟同学家里的墙壁最少要贴这种瓷砖多少块?
(2)四边形EFGH是什么四边形?并说明理由.
(3)全部贴满后,这面墙壁上有多少个有淡蓝色花纹的菱形?
查看答案