满分5 > 初中数学试题 >

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C. (1)求...

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

manfen5.com 满分网
(1)抛物线与x轴的交点,即当y=0,C点坐标即当x=0,分别令y以及x为0求出A,B,C坐标的值; (2)四边形ACBP的面积=△ABC+△ABP,由A,B,C三点的坐标,可知△ABC是直角三角形,且AC=BC,则可求出△ABC的面积,根据已知可求出P点坐标,可知AP的长度,以及点B到直线的距离,从而求出△ABP的面积,则就求出四边形ACBP的面积; (3)假设存在这样的点M,两个三角形相似,根据题意以及上两题可知,∠PAC∠和∠MGA是直角,只需证明或即可.设M点坐标,根据题中所给条件可求出线段AG,CA,MG,CA的长度,然后列等式,分情况讨论,求解. 【解析】 (1)令y=0, 得x2-1=0 解得x=±1, 令x=0,得y=-1 ∴A(-1,0),B(1,0),C(0,-1);(2分) (2)∵OA=OB=OC=1, ∴∠BAC=∠ACO=∠BCO=45°. ∵AP∥CB, ∴∠PAB=45°. 过点P作PE⊥x轴于E,则△APE为等腰直角三角形, 令OE=a,则PE=a+1, ∴P(a,a+1). ∵点P在抛物线y=x2-1上, ∴a+1=a2-1. 解得a1=2,a2=-1(不合题意,舍去). ∴PE=3(4分). ∴四边形ACBP的面积S=AB•OC+AB•PE =×2×1+×2×3=4;(6分) (3)假设存在 ∵∠PAB=∠BAC=45°, ∴PA⊥AC ∵MG⊥x轴于点G, ∴∠MGA=∠PAC=90° 在Rt△AOC中,OA=OC=1, ∴AC= 在Rt△PAE中,AE=PE=3, ∴AP=3(7分) 设M点的横坐标为m,则M(m,m2-1) ①点M在y轴左侧时,则m<-1. (ⅰ)当△AMG∽△PCA时,有. ∵AG=-m-1,MG=m2-1. 即 解得m1=-1(舍去)m2=(舍去). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m=-1(舍去)m2=-2. ∴M(-2,3)(10分). ②点M在y轴右侧时,则m>1 (ⅰ)当△AMG∽△PCA时有 ∵AG=m+1,MG=m2-1 ∴ 解得m1=-1(舍去)m2=. ∴M(,). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m1=-1(舍去)m2=4, ∴M(4,15). ∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似 M点的坐标为(-2,3),(,),(4,15).(13分)
复制答案
考点分析:
相关试题推荐
在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,用得到的△AEF和四边形EBCF可以拼接成平行四边形EBCP,剪切线与拼图过程如图所示,依照上述方法,按要求完成下列操作设计,并画出图形说明.
(1)在△ABC中,增加条件    ,沿着    一刀剪切后可以拼接成矩形.
(2)在△ABC中,增加条件    ,沿着    一刀剪切后可以拼接成菱形.
(3)在△ABC中,增加条件    ,沿着    一刀剪切后可以拼接成正方形.
(4)在△ABC(AB≠AC)中,一刀剪切后也可以拼接成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是:    .然后,沿着剪切线一刀剪切后可以拼接成等腰梯形,画出剪切线与拼图示意图.
manfen5.com 满分网 查看答案
如图,小莉的家在锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测量大厦的高度,小莉在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦顶部B的仰角为30°,已知电梯公寓高82米,请你帮助小莉计算出大厦的高度BC及大厦与电梯公寓间的距离AC.

manfen5.com 满分网 查看答案
如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM.
(1)求⊙M的半径.
(2)若D为OA的中点,求证:CD是⊙M的切线.

manfen5.com 满分网 查看答案
甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积manfen5.com 满分网大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:
(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;
(2)求甲、乙两人获胜的概率.
查看答案
某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入800万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1800万元.
(1)求A市投资“改水工程”的年平均增长率;
(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.