问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:


①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
考点分析:
相关试题推荐
要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的

,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O
1和O
2,且O
1到AB、BC、AD的距离与O
2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
查看答案
如图,点O是正△ACE和正△BDF的中心,且AE∥BD,则∠AOF=
度.
查看答案
若用半径为r的圆形桌布将边长为60cm的正方形餐桌盖住,则r的最小值为
cm.
查看答案
如图,正方形ABCD是⊙O的内接正方形,点P在劣弧

上不同于点C得到任意一点,则∠BPC的度数是
度.
查看答案
如图是对称中心为点O的正六边形.如果用一个含30°角的直角三角板的角,借助点O(使角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能的值是
.
查看答案