满分5 > 初中数学试题 >

已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数...

已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
(1)化简方程,用分解因式法求出两根; (2)直角三角形的面积为x1x2,利用根与系数的关系可以得到关于p的关系式,然后利用二次函数可以求出什么时候有最大值. 【解析】 (1)原方程变为:x2-(m+2)x+2m=p2-(m+2)p+2m, ∴x2-p2-(m+2)x+(m+2)p=0, (x-p)(x+p)-(m+2)(x-p)=0, 即(x-p)(x+p-m-2)=0, ∴x1=p,x2=m+2-p; (2)根据(1)得到 直角三角形的面积为x1x2=p(m+2-p) =p2+(m+2)p =-(p-)2+, ∴当p=(m>-2)时,以x1,x2为两直角边长的直角三角形的面积最大,最大面积为.
复制答案
考点分析:
相关试题推荐
如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2
(1)求S与x的函数关系式;
(2)如果要围成面积为45米2的花圃,AB的长是多少米?
(3)能围成面积比45米2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.

manfen5.com 满分网 查看答案
某物体从上午7时至下午4时的温度M(℃)是时间t(小时)的函数:M=-2t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为    ℃. 查看答案
将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价    元,最大利润为    元. 查看答案
在距离地面2m高的某处把一物体以初速度v(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=vt-manfen5.com 满分网gt2(其中g是常数,通常取10m/s2).若v=10m/s,则该物体在运动过程中最高点距地面    m. 查看答案
在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.