满分5 > 初中数学试题 >

如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90...

如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,现计划在上面建设一个面积为S的矩形综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m.
(1)求边AD的长;
(2)设PA=x(m),求S关于x的函数关系式,并指出自变量x的取值范围;
(3)若S=3300m2,求PA的长.(精确到0.1m)

manfen5.com 满分网
(1)可通过构建直角三角形进行求解,过D作AB的垂线,那么可在构建的直角三角形中,根据梯形两底的差和梯形的高,用勾股定理求出AD的长. (2)可根据(1)中构建的直角三角形求出∠A的正弦和余弦值,然后在直角三角形AMP中,表示出AM,PM的长,进而可根据AB的长,表示出矩形的长BM的值,由此可根据矩形的面积公式得出关于S、x的函数关系式.自变量的取值范围可根据PM的长至少为36m来解,即让PM的表达式大于等于36即可. (3)可将S的值代入(2)所求得的函数解析式中,求出x的值,然后看x的值是否符合自变量的取值范围. 【解析】 (1)过点D作DE⊥AB于E 则DE∥BC且DE=BC,CD=BE,DE∥PM Rt△ADE中,DE=80m ∴AE=AB-BE=100-40=60m ∴AD==100m (2)∵DE∥PM ∴△APM∽△ADE ∴ 即 ∴PM=x,AM=x 即MB=AB-AM=100-x S=PM•MB=x•(100-x)=-x2+80x 由PM=x≥36,得x≥45 ∴自变量x的取值范围为45≤x≤100 (3)当S=3300m2时, 80x-x2=3300 12x2-2000x+82500=0 3x2-500x+20625=0 ∴x1=≈91.7(m),x2==75(m) 即当s=3300m2时,PA的长为75m,或约为91.7m.
复制答案
考点分析:
相关试题推荐
已知平面直角坐标系xOy中,点A在抛物线y=manfen5.com 满分网x2+manfen5.com 满分网上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC.
(1)求证:△BDC是等腰三角形;
(2)如果A点的坐标是(1,m),求△BDC的面积;
(3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由.
manfen5.com 满分网
查看答案
已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点.
(1)求抛物线的解析式及B的坐标;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=manfen5.com 满分网x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______
(2)A,B的中点是点C,则sin∠CMB=______
查看答案
OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=manfen5.com 满分网x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

manfen5.com 满分网 查看答案
已知抛物线y=-x2-2kx+3k2(k>0)交x轴于A、B两点,交y轴于点C,以AB为直径的⊙E交y轴于点D、F(如图),且DF=4,G是劣弧A D上的动点(不与点A、D重合),直线CG交x轴于点P.
(1)求抛物线的解析式;
(21)当直线CG是⊙E的切线时,求tan∠PCO的值;
(31)当直线CG是⊙E的割线时,作GM⊥AB,垂足为H,交PF于点M,交⊙E于另一点N,设MN=t,GM=u,求u关于t的函数关系式.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.