满分5 > 初中数学试题 >

如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4). (1)求抛物线...

如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可. (2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式. ①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形. ②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,-3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点. 【解析】 (1)因为抛物线的对称轴是x=, 设解析式为y=a(x-)2+k. 把A,B两点坐标代入上式,得, 解得a=,k=-. 故抛物线解析式为y=(x-)2-,顶点为(,-). (2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x-)2-, ∴y<0, 即-y>0,-y表示点E到OA的距离. ∵OA是OEAF的对角线, ∴S=2S△OAE=2××OA•|y|=-6y=-4(x-)2+25. 因为抛物线与x轴的两个交点是(1,0)和(6,0), 所以自变量x的取值范围是1<x<6. ①根据题意,当S=24时,即-4(x-)2+25=24. 化简,得(x-)2=. 解得x1=3,x2=4. 故所求的点E有两个, 分别为E1(3,-4),E2(4,-4), 点E1(3,-4)满足OE=AE, 所以平行四边形OEAF是菱形; 点E2(4,-4)不满足OE=AE, 所以平行四边形OEAF不是菱形; ②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形, 此时点E的坐标只能是(3,-3), 而坐标为(3,-3)的点不在抛物线上, 故不存在这样的点E,使平行四边形OEAF为正方形.
复制答案
考点分析:
相关试题推荐
实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是____________
manfen5.com 满分网
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
manfen5.com 满分网
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点manfen5.com 满分网manfen5.com 满分网,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.
查看答案
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=manfen5.com 满分网x2+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=manfen5.com 满分网x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.

manfen5.com 满分网 查看答案
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.
(1)求y与x的函数表达式;
(2)当x为何值时,y有最大值,最大值是多少?

manfen5.com 满分网 查看答案
如图1,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A'DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A'落在AH所在的直线上).
(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式;
(2)当x取何值时,y的值最大,最大值是多少?

manfen5.com 满分网 查看答案
已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.