满分5 > 初中数学试题 >

如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂...

如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.

manfen5.com 满分网
(1)三角形SBR和ABC中,有一个公共角B,都有一组直角,如果再有一组角相等即可证明两三角形相似,SR平分∠BRP,那么∠BRS=45°=∠C,因此两三角形的相似条件凑齐,两三角形相似; (2)应该是相等关系,△STP和△APE中,PT=PF,又有一组直角,那么只要再有一组角相等即可得出全等,∠TPS+∠APF=180-90=90°,那么不难证得∠STP=∠APF,因此两三角形全等,那么TS=PA; (3)要求正方形FPTE的面积,那么就要求出它的边长.RS是等腰直角△PRS的高,那么BS=PS,PS=,由(2)证得的全等三角形中我们可得出PS=AF,如果设PA=x,我们就能用x表示出AF的值,直角三角形APF中,我们就能用x表示出PF2,也就得出了y与x的函数关系式,然后确定x的取值范围,x最小时x=PA=0此时P与A重合,S与T重合,E与R重合.x最大时,T与R重合,此时TS=BS=SP=PA,因此PA=,那么x的范围就是0≤x≤,然后根据函数的性质和自变量的范围求出y的最大和最小值. 【解析】 (1)∵RS是直角∠PRB的平分线, ∴∠PRS=∠BRS=45°. 在△ABC与△SBR中,∠C=∠BRS=45°, ∠B是公共角, ∴△ABC∽△SBR. (2)线段TS的长度与PA相等. ∵四边形PTEF是正方形, ∴PF=PT,∠SPT+∠FPA=180°-∠TPF=90°, 在Rt△PFA中,∠PFA+∠FPA=90°, ∴∠PFA=∠TPS, ∴Rt△PAF≌Rt△TSP,∴PA=TS. 当点P运动到使得T与R重合时,这时△PFA与△TSP都是等腰直角三角形且底边相等,即有PA=TS. 由以上可知,线段ST的长度与PA相等. (3)由题意,RS是等腰Rt△PRB的底边PB上的高, ∴PS=BS,∴BS+PS+PA=1,∴PS=. 设PA的长为x,易知AF=PS, 则y=PF2=PA2+PS2,得y=x2+()2, 即y=, 根据二次函数的性质,当x=时,y有最小值为. 如图2,当点P运动使得T与R重合时,PA=TS为最大. 易证等腰Rt△PAF≌等腰Rt△PSR≌等腰Rt△BSR, ∴PA=. 如图3,当P与A重合时,得x=0. ∴x的取值范围是0≤x≤. ∴①当x的值由0增大到时,y的值由减小到 ∴②当x的值由增大到时,y的值由增大到. ∵≤≤, ∴在点P的运动过程中,正方形PTEF面积y的最小值是,y的最大值是.
复制答案
考点分析:
相关试题推荐
如图1,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).[图2、图3为解答备用图]
manfen5.com 满分网
(1)k=______,点A的坐标为______,点B的坐标为______
(2)设抛物线y=x2-2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2-2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.
查看答案
已知:t1,t2是方程t2+2t-24=0的两个实数根,且t1<t2,抛物线y=manfen5.com 满分网x2+bx+c的图象经过点A(t1,0),B(0,t2).
(1)求这个抛物线的解析式;
(2)设点P(x,y)是抛物线上一动点,且位于第三象限,四边形OPAQ是以OA为对角线的平行四边形,求平行四边形OPAQ的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,当平行四边形OPAQ的面积为24时,是否存在这样的点P,使▱OPAQ为正方形?若存在,求出P点坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE-EO|,再以CM、CO为边作矩形CMNO.
(1)试比较EO、EC的大小,并说明理由;
(2)令m=manfen5.com 满分网,请问m是否为定值?若是,请求出m的值;若不是,请说明理由;
(3)在(2)的条件下,若CO=1,CE=manfen5.com 满分网,Q为AE上一点且QF=manfen5.com 满分网,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式;
(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.
(1)用x表示△ADE的面积;
(2)求出0<x≤5时y与x的函数关系式;
(3)求出5<x<10时y与x的函数关系式;
(4)当x取何值时,y的值最大,最大值是多少?

manfen5.com 满分网 查看答案
已知直线l:y=-x+m(m≠0)交x轴、y轴于A、B两点,点C、M分别在线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M旋转180°,得到△FEM,则点E在y轴上,点F在直线l上;取线段EO中点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:过点F的双曲线为C1,过点M且以B为顶点的抛物线为C2,过点P以M为顶点的抛物线为C3
(1)如图,当m=6时,①直接写出点M、F的坐标,②求C1、C2的函数解析式;
(2)当m发生变化时,①在C1的每一支上,y随x的增大如何变化请说明理由.②若C2、C3中的y都随着x的增大而减小,写出x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.