满分5 > 初中数学试题 >

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (...

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

manfen5.com 满分网
(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式; (2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求; (3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标. 【解析】 (1)将A(1,0),B(-3,0)代y=-x2+bx+c中得 (2分) ∴(3分) ∴抛物线解析式为:y=-x2-2x+3;(4分) (2)存在(5分) 理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称 ∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小 ∵y=-x2-2x+3 ∴C的坐标为:(0,3) 直线BC解析式为:y=x+3(6分) Q点坐标即为 解得 ∴Q(-1,2);(7分) (3)存在.(8分) 理由如下:设P点(x,-x2-2x+3)(-3<x<0) ∵S△BPC=S四边形BPCO-S△BOC=S四边形BPCO- 若S四边形BPCO有最大值,则S△BPC就最大, ∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分) =BE•PE+OE(PE+OC) =(x+3)(-x2-2x+3)+(-x)(-x2-2x+3+3) = 当x=-时,S四边形BPCO最大值= ∴S△BPC最大=(10分) 当x=-时,-x2-2x+3= ∴点P坐标为(-,).(11分)
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

manfen5.com 满分网 查看答案
如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知抛物线y=manfen5.com 满分网x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=manfen5.com 满分网x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
查看答案
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-manfen5.com 满分网x与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线y=ax2-manfen5.com 满分网x经过点A,试确定此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

manfen5.com 满分网 查看答案
如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h.
(1)请你用含x的代数式表示h;
(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.