满分5 > 初中数学试题 >

如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿...

如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?

manfen5.com 满分网
(1)由PN、BC平行易得△APM∽△ABC,即得到=,由题意代入各线段的值,即可得解. (2)由三角形面积公式得,△BPM的面积S=BP•AM,据(1)中条件可得到一个关于x的二次函数式,求x的最大值即得面积的最大值. 【解析】 (1)∵PM∥BC ∴△APM∽△ABC, ∴, 又∵AP=10-2x,AB=10,AM=y,AC=5, ∴y=-x+5; ∵x≥0,y≥0, ∴自变量x的取值范围为0≤x≤5. (2)S=BP•AM =•2x(-x+5) =-x2+5x =-+. ∴当x=时,S有最大值,最大值为.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

manfen5.com 满分网 查看答案
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
查看答案
一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at2的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:manfen5.com 满分网≈2.24,manfen5.com 满分网≈2.45,计算结果保留两个有效数字.)

manfen5.com 满分网 查看答案
某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.