满分5 > 初中数学试题 >

取一张矩形的纸进行折叠,具体操作过程如下: 第一步:先把矩形ABCD对折,折痕为...

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图1;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为Bn,得Rt△ABE,如图2;
第三步:沿EB线折叠得折痕EF,如图3;
利用展开图4探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
manfen5.com 满分网
(1)应该是等边三角形.先证明△ABE≌△AB′E,得出∠AB'E=90°,∠A=∠BAE,然后证明△AB′E≌△AB′F,得出AE=AF,∠B'AE=∠B'AF,从而可确定∠EAF=60°,继而得出△AEF是等边三角形. (2)根据(1)我们可看出,要想折出等边三角形,AD≥AF,我们看当AD=AF时,矩形的长和宽的比例是多少,AF:AB=sin60°=2:,那么要想折出等边三角形,那么矩形的宽就必须小于长的. 【解析】 (1)△AEF是等边三角形. 证明:∵△ABE与△AB′E完全重合, ∴△ABE≌△AB′E,∠BAE=∠1, 由平行线等分线段定理知EB′=B′F, 又∵∠AB′E=90° ∴△AB′E≌△AB′F, ∴AE=AF,∠1=∠2=∠BAD=30°, ∴△AEF是等边三角形. (2)不一定. 由上推证可知当矩形的长恰好等于等边△AEF的边AF时,即矩形的宽:长=AB:AF=sin60°=:2 时正好能折出. 设矩形的长为a,宽为b,可知 当b≤a时,按此法一定能折出等边三角形; 当a<b<a时,按此法无法折出完整的等边三角形.
复制答案
考点分析:
相关试题推荐
在矩形ABCD中,AB=14,BC=8,E在线段AB上,F在射线AD上.
(1)沿EF翻折,使A落在CD边上的G处(如图1),若DG=4,
①求AF的长;
②求折痕EF的长;
(2)若沿EF翻折后,点A总在矩形ABCD的内部,试求AE长的范围.

manfen5.com 满分网 查看答案
探究:
(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?
(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2______∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=______
(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°-______=______,猜想∠BDA+∠CEA与∠A的关系为______manfen5.com 满分网
查看答案
已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.
若∠1=60°,AE=1.
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S.

manfen5.com 满分网 查看答案
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合).  
(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;
(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;
(3)如图③,分别在AD、BC上取点F、C′,使得∠APF=∠BPC′,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△PBC′沿PC′翻折得到△PEC′,连接FC′,取FC′的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.manfen5.com 满分网
查看答案
同学们,折纸中也有很大的学问呢.黄老师出示了以下三个问题,小聪、小明、小慧分别在黑板上进行了板演,请你也解答这个问题:
在一张长方形ABCD纸片中,AD=25cm,AB=20cm,现将这张纸片按如下列图示方式折叠,分别求折痕的长.
(1)如图1,折痕为AE;
(2)如图2,P,Q分别为AB,CD的中点,折痕为AE;
(3)如图3,折痕为EF.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.