满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线l是第二、四象限的角平分线. (1)实验与探究:由...

如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.
(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(-2,0),请在图中分别标明B(-1,5)、C(3,2)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;
(2)归纳与发现:结合图观察以上三组点的坐标,你会发现坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P'的坐标为______(不必证明);
(3)运用与拓展:已知两点D(-1,-3)、E(2,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出点Q的坐标.

manfen5.com 满分网
(1)分别作B(-1,5)、C(3,2)关于直线l的对称点B',C',B'(-5,1)、C'(-2,-3); (2)观察以上三组点的坐标,你会发现坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P'的坐标为(-b,-a); (3)点D关于直线l的对称点D'的坐标为(3,1),可求出点E、点D'的直线解析式为y=5x-14.点Q是直线y=5x-14与直线l:y=-x的交点,解方程组:即可得到点Q的坐标. (本小题满分12分) 【解析】 (1)如图:(2分) B'(-5,1)、C'(-2,-3);(4分) (2)P(-b,-a);(6分) (3)点D关于直线l的对称, 点D'的坐标为(3,1),[注:求出点E的对称点的坐标参照给分] 设过点E、点D'的直线解析式为:y=kx+b,(8分) 分别把点E、D'的坐标代入其中, 得关于k、b的二元一次方程组, 解得k=5,b=-14,(9分) ∴y=5x-14, 点Q是直线y=5x-14与直线l:y=-x的交点,(10分) 解方程组:得,(11分) ∴点Q的坐标为(,-).(12分)
复制答案
考点分析:
相关试题推荐
需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.

manfen5.com 满分网 查看答案
如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.
(1)用含x的代数式表示AC+CE的长;
(2)请问点C满足什么条件时,AC+CE的值最小;
(3)根据(2)中的规律和结论,请构图求出代数式manfen5.com 满分网的最小值.

manfen5.com 满分网 查看答案
几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
manfen5.com 满分网
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.
查看答案
两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种(至少设计四种).manfen5.com 满分网
查看答案
已知图中A,B分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S1,S2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.
(1)求s1和s2的值;
(2)请你在图C中的网格上画一个面积为8个平方单位的轴对称图形.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.