阅读下面材料:
如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;
如图(2),以BC为轴,把△ABC翻折180°,可以变到△DBC的位置;
如图(3),以点A为中心,把△ABC旋转180°,可以变到△AED的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;
②指图中线段BE与DF之间的关系,为什么?

考点分析:
相关试题推荐
如图,在网格中有一个四边形图案.
(1)请你画出此图案绕点O顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;
(2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A
1、A
2、A
3,求四边形AA
1A
2A
3的面积;
(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.
查看答案
如图,若将△ABC的绕点C顺时针旋转90°后得到△DEC,则A点的对应点D的坐标是______,B点的对应点E的坐标是______,请画出旋转后的△DEC.(不要求写画法)
查看答案
在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(-3,0),B(0,0),C(-3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.
查看答案
如图,画出△ABC关于原点O对称的△A
1B
1C
1,并求出点A
1、B
1、C
1的坐标.
查看答案
如图,在正方形网格上有一个△ABC.
(1)作出△ABC关于点O的中心对称图形△A′B′C′(不写作法,但要标出字母);
(2)若网格上的最小正方形边长为1,求出△ABC的面积.
查看答案