如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;
(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.
考点分析:
相关试题推荐
如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了多少度______度;
(2)连接CD,试判断△CBD的形状;______.
(3)求∠BDC的度数.______度.
查看答案
在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”根据图形,解决下面的问题:
(1)图中的格点△A′B′C′是由格点△ABC通过哪些变换方法得到的?
(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点坐标,并求出△DEF的面积.
查看答案
如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
查看答案
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.
查看答案
如图,把正方形ACFG与Rt△ACB按如图(甲)所示重叠在一起,其中AC=2,∠BAC=60°,若把Rt△ACB绕直角顶点C按顺时针方向旋转,使斜边AB恰好经过正方形ACFG的顶点F,得△A′B′C′,A B分别与A′C,A′B′相交于D、E,如图(乙)所示.
①△ACB至少旋转多少度才能得到△A′B′C′?说明理由;
②求△ACB与△A′B′C′的重叠部分(即四边形CDEF)的面积(若取近似值,则精确到0.1)?
查看答案