如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______;
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
考点分析:
相关试题推荐
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.
(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S
△DEF+S
△CEF=

S
△ABC;
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S
△DEF、S
△CEF、S
△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
查看答案
如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?
查看答案
如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA
1B
1.

(1)线段OA
1的长是______,∠AOB
1的度数是______;
(2)连接AA
1,求证:四边形OAA
1B
1是平行四边形;
(3)求四边形OAA
1B
1的面积.
查看答案
如图,在直角坐标系中,已知点M
的坐标为(1,0),将线段OM
绕原点O沿逆时针方向旋转45°,再将其延长到M
1,使得M
1M
⊥OM
,得到线段OM
1;又将线段OM
1绕原点O沿逆时针方向旋转45°,再将其延长到M
2,使得M
2M
1⊥OM
1,得到线段OM
2,如此下去,得到线段OM
3,OM
4,…,OM
n(1)写出点M
5的坐标;
(2)求△M
5OM
6的周长;
(3)我们规定:把点M
n(x
n,y
n)(n=0,1,2,3…)的横坐标x
n,纵坐标y
n都取绝对值后得到的新坐标(|x
n|,|y
n|)称之为点M
n的“绝对坐标”.根据图中点M
n的分布规律,请你猜想点M
n的“绝对坐标”,并写出来.
查看答案
如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.
(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;
(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为______;
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为______;
(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为______.
查看答案