满分5 > 初中数学试题 >

如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,...

manfen5.com 满分网如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是( )
A.②④
B.①④
C.②③
D.①③
由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的. 【解析】 ∵△ADC绕点A顺时针旋转90°得△AFB, ∴△ADC≌△AFB,∠FAD=90°, ∴AD=AF, ∵∠DAE=45°, ∴∠FAE=90°-∠DAE=45°, ∴∠DAE=∠FAE,AE为△AED和△AEF的公共边, ∴△AED≌△AEF ∴ED=FE 在Rt△ABC中,∠ABC+∠ACB=90°, 又∵∠ACB=∠ABF, ∴∠ABC+∠ABF=90°即∠FBE=90°, ∴在Rt△FBE中BE2+BF2=FE2, ∴BE+DC=DE③显然是不成立的. 故正确的有①④,不正确的有③,②不一定正确. 故选B
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论中正确的个数有①∠EAF=45°;②△ABE∽△ACD;③AE平分∠CAF;④BE2+DC2=DE2( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
查看答案
以下三组两个图形之间的变换分别属于( )
manfen5.com 满分网
A.平移、旋转、旋转
B.平移、轴对称、轴对称
C.平移、轴对称、旋转
D.平移、旋转、轴对称
查看答案
下列各物体中,是一样的为( )manfen5.com 满分网
A.(1)与(2)
B.(1)与(3)
C.(1)与(4)
D.(2)与(3)
查看答案
对如图的几何体变换位置或视角,则可以得到的几何体是( )manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
在下列四种图形变换中,本题图案不包含的变换是( )
manfen5.com 满分网
A.位似
B.旋转
C.轴对称
D.平移
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.