如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE,过B点折纸片使D点叠在直线AD上,得折痕PQ.
(1)求证:△PBE∽△QAB;
(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;
(3)如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?
考点分析:
相关试题推荐
现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′.
(1)请用尺规,在图中作出△AEB′(保留作图痕迹);
(2)试求B′、C两点之间的距离.
查看答案
如图,已知矩形ABCD.
(1)在图中作出△CDB沿对角线BD所在的直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留清晰的作图痕迹,简要写明作法);
(2)设C′B与AD的交点为E,若△EBD的面积是整个矩形面积的

,求∠DBC的度数.
查看答案
如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.
证明:(1)BF=DF;(2)AE∥BD.
查看答案
如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.
(1)求证:EF∥BD;
(2)若AB=7,CD=3,求线段EF的长.
查看答案
如图,在△ABC中,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请证明四边形AEA′F为菱形;
(2)当等腰△ABC满足什么条件时,按上述方法操作,四边形AEA′F将变成正方形.(只写结果,不作证明)
查看答案