如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.
(1)用含有x的代数式表示BF的长.
(2)设四边形DEBG的面积为S,求S与x的函数关系式.
(3)当x为何值时,S有最大值,并求出这个最大值.
[参考公式:二次函数y=ax
2+bx+c图象的顶点坐标为(-

,

)].
考点分析:
相关试题推荐
点P(1,a)在反比例函数y=

的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.
查看答案
如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5

,且tan∠EDA=

.
(1)判断△OCD与△ADE是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
查看答案
如图,直线y=-

x+1与x轴交于点A,与y轴交于点B,以AB为边在第一象限内作正△ABC.
(1)求点C的坐标;
(2)把△ABO沿直线AC翻折,点B落在点D处,点D是否在经过点C的反比例函数的图象上?说明理由;
(3)连接CD,判断四边形ABCD是什么四边形?说明理由.
查看答案
如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.
查看答案
如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足

.
(1)求B、C两点的坐标;
(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式;
(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.
查看答案