满分5 > 初中数学试题 >

在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半...

在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

manfen5.com 满分网
(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积; (2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数; (3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子. 【解析】 (1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°, ∴OA旋转了45°. ∴OA在旋转过程中所扫过的面积为. (2)∵MN∥AC, ∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°. ∴∠BMN=∠BNM.∴BM=BN. 又∵BA=BC,∴AM=CN. 又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN. ∴∠AOM=∠CON=(∠AOC-∠MON)=(90°-45°)=22.5°. ∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC的过程中,p值无变化. 证明:延长BA交y轴于E点, 则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM, ∴∠AOE=∠CON. 又∵OA=OC,∠OAE=180°-90°=90°=∠OCN. ∴△OAE≌△OCN. ∴OE=ON,AE=CN. 又∵∠MOE=∠MON=45°,OM=OM, ∴△OME≌△OMN.∴MN=ME=AM+AE. ∴MN=AM+CN, ∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4. ∴在旋转正方形OABC的过程中,p值无变化.
复制答案
考点分析:
相关试题推荐
(1)在平面直角坐标系中,将点A(-3,4)向右平移5个单位到点A1,再将点A1绕坐标原点顺时针旋转90°到点A2.直接写出点A1,A2的坐标;
(2)在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位到第一象限点B1,再将点B1绕坐标原点顺时针旋转90°到点B2,直接写出点B1,B2的坐标;
(3)在平面直角坐标系中.将点P(c,d)沿水平方向平移n个单位到点P1,再将点P1绕坐标原点顺时针旋转90°到点P2,直接写出点P2的坐标.
查看答案
在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.
(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).
①等腰梯形是旋转对称图形,它有一个旋转角为180度.(______
②矩形是旋转对称图形,它有一个旋转角为180°.(______
(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是______(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.
(3)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件:
①是轴对称图形,但不是中心对称图形:______
②既是轴对称图形,又是中心对称图形:______

manfen5.com 满分网 查看答案
如图,已知AD=AE,AB=AC.
(1)求证:∠B=∠C;
(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?

manfen5.com 满分网 查看答案
如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了多少度______度;
(2)连接CD,试判断△CBD的形状;______
(3)求∠BDC的度数.______度.

manfen5.com 满分网 查看答案
在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”根据图形,解决下面的问题:
(1)图中的格点△A′B′C′是由格点△ABC通过哪些变换方法得到的?
(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点坐标,并求出△DEF的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.