满分5 > 初中数学试题 >

课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,...

课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化.当△AOB旋转90°时,得到∠A1OB1.已知A(4,2),B(3,0).
(1)△A1OB1的面积是______;A1点的坐标为(______);B1点的坐标为(______);
(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交x轴于E.此时A′,O′和B′的坐标分别为(1,3),(3,-1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积;
(3)在(2)的条件下,△AOB外接圆的半径等于______manfen5.com 满分网
(1)如图1,作AE⊥OE,垂足为点E,作A1F⊥OF,由旋转的性质知,△OAE≌△OA1F,有A1F=AE=2,OF=OE=4,OB1=OB,∴点A1的坐标为(-2,4),点B1的坐标为(0,3),∴S△OB1A1=OB1•A1F=3; (2)作CG⊥BD于G,CH⊥x轴于H,易得四边形CHBG为正方形,有∠CHE=∠CGD=90°,CH=CG,∠HCE=∠GCD,∴由ASA证得△HCE≌△GCD,有S四边形CEBD=S正方形CHBG=1; (3)由垂径定理知,△AOB的外接圆的圆心应为OB与OA的中垂线的交点.OB的中垂线的解析式为x=,OA的中垂线是点A′,点O′确定的,可由待定系数法求得OA的中垂线的解析式为y=-2x+5,所以圆心的坐标为(,4),由勾股定理求得OA=,即△AOB的外接圆的半径为. 【解析】 (1)3,A1(-2,4),B1(0,3); (2)作CG⊥BD于G,CH⊥x轴于H, ∵B',B的横坐标相等, ∴B'B⊥x轴, ∴四边形CHBG为矩形. ∵C(2,1),B(3,0) ∴CG=1, ∴G(3,1), ∴GB=1, ∴CG=CH=1, ∴矩形CHBG为正方形. ∴∠HCG=90度. ∵∠ECD=90°, ∴∠HCE+∠ECG=∠GCD+∠ECG=90° ∴∠HCE=∠GCD. 在△HCE和△GCD中, ∴△HCE≌△GCD. ∴S四边形CEBD=S正方形CHBG=1; (3)由垂径定理知,△AOB的外接圆的圆心应为OB与OA的中垂线的交点. OB的中垂线的解析式为x=, 设OA的中垂线的解析式为y=kx+b,把点A′,O′的坐标代入得, 解得,k=-2,b=5,即OA的中垂线的解析式为y=-2x+5, 所以圆心的坐标为(,2),△AOB的外接圆的半径==.
复制答案
考点分析:
相关试题推荐
已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示).
(1)求角α;
(2)说明四边形EBCD是等腰梯形.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于manfen5.com 满分网的直角三角形纸片的直角顶点放在对角线FO上.
(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为______
(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.
manfen5.com 满分网
查看答案
两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.
(1)当旋转到顶点D、H重合时,连接AG(如图②),求点D到AG的距离;
(2)当α=45°时(如图③),求证:四边形MHND为正方形.manfen5.com 满分网
查看答案
如图,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与A重合,两边分别与AB、AD重合.将直角绕点A按逆时针方向旋转,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时,作∠EAF的平分线交CD于G,连接EG.
求证:(1)BE=DF;(2)BE+DG=EG.

manfen5.com 满分网 查看答案
如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.