满分5 > 初中数学试题 >

一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所...

一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是平行的,且水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cmmanfen5.com 满分网,BC=40cm,请你作出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.
(1)以圆心为轨迹找路线,一一画出. (2)根据此轨迹求线段,求弧长最后相加. 【解析】 如下图,画出圆盘滚动过程中圆心移动路线的分解图象. 可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧3,线段O3O4四部分构成. 其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD. ∵BC与AB延长线的夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心位置, ∴此时⊙O1与AB和BC都相切. 则∠O1BE=∠O1BF=60度. 此时Rt△O1BE和Rt△O1BF全等, 在Rt△O1BE中,BE=cm. ∴OO1=AB-BE=(60-)cm. ∵BF=BE=cm, ∴O1O2=BC-BF=(40-)cm. ∵AB∥CD,BC与水平夹角为60°,∴∠BCD=120度. 又∵∠O2CB=∠O3CD=90°, ∴∠O2CO3=60度. 则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧. ∴的长=×2π×10=πcm. ∵四边形O3O4DC是矩形, ∴O3O4=CD=40cm. 综上所述,圆盘从A点滚动到D点,其圆心经过的路线长度是 (60-)+(40-)+π+40=(140-+π)cm.
复制答案
考点分析:
相关试题推荐
如图,ABCD是边长为1的正方形,其中manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的圆心依次是A、B、C.
(1)求点D沿三条圆弧运动到点G所经过的路线长;
(2)判断直线GB与DF的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦,点E为垂足,已知⊙O的半径为10,sin∠COD=manfen5.com 满分网
(1)求弦AB的长;
(2)CD的长;
(3)劣弧AB的长(结果保留三个有效数字,sin53.13°≈0.8,π≈3.142).

manfen5.com 满分网 查看答案
如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理【解析】

(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转manfen5.com 满分网周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周;
(2)如图3,∠ABC=90°,AB=BC=manfen5.com 满分网c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转______周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
manfen5.com 满分网
查看答案
如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=manfen5.com 满分网,∠A=30度.
(1)求劣弧manfen5.com 满分网的长;
(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.

manfen5.com 满分网 查看答案
阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图中①的三角形被一个圆覆盖,②中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.