在同一平面直角坐标系中有6个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(-2,-3),F(0,-4).
(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;
(2)若将直线EF沿y轴向上平移,当它经过点D时,设此时的直线为l
1.
①判断直线l
1与⊙P的位置关系,并说明理由;
②再将直线l
1绕点D按顺时针方向旋转,当它经过点C时,设此时的直线为l
2.求直线l
2与⊙P的劣弧CD围成的图形的面积.(结果保留π)
考点分析:
相关试题推荐
“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).
(1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少?
(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中?
查看答案
问题探究:
(1)如图①所示是一个半径为

,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为

,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
查看答案
问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:


①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
查看答案
某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m
2和1200m
2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:
| 公园A | 公园B |
路程(千米) | 运费单价(元) | 路程(千米) | 运费单价(元) |
甲地 | 30 | 0.25 | 32 | 0.25 |
乙地 | 22 | 0.3 | 30 | 0.3 |
(注:运费单价指将每平方米草皮运送1千米所需的人民币)

(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m
2)
(2)请设计出总运费最省的草皮运送方案,并说明理由.
查看答案
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C______;D(______);
②⊙D的半径=______
查看答案