如图,在Rt△ABC中,∠BAC=90°,∠C=60°,BC=24,点P是BC边上的动点(点P与点B、C不重合),过动点P作PD∥BA交AC于点D.
(1)若△ABC与△DAP相似,则∠APD是多少度?
(2)试问:当PC等于多少时,△APD的面积最大?最大面积是多少?
(3)若以线段AC为直径的圆和以线段BP为直径的圆相外切,求线段BP的长.
考点分析:
相关试题推荐
请你类比一条直线和一个圆的三种位置关系,在图,在①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.
查看答案
已知:⊙O
1与⊙O
2相交于A、B两点,⊙O
1的切线AC交⊙O
2于点C.直线EF过点B交⊙O
1于点E,交⊙O
2于点F.

(1)若直线EF交弦AC于点K时(如图1).求证:AE∥CF;
(2)若直线EF交弦AC的延长线于点时(如图2).求证:DA•DF=DC•DE;
(3)若直线EF交弦AC的反向延长线于点(在图3自作),试判断(1)、(2)中的结论是否成立并证明你的正确判断.
查看答案
已知⊙O
1与⊙O
2相交于A,B,且⊙O
1的半径为3cm,⊙O
2的半径为5cm.
(1)过点B作CD⊥AB分别交⊙O
1和⊙O
2于C,D两点,连接AC,AD,如图(1),试求

的值;
(2)过点B任画一条直线分别交⊙O
1和⊙O
2于E,F,连接AE和AF,如图(2),试求

的值;
(3)在解答本题的过程中用到的数学思想方法是______.
查看答案
已知:如图,⊙O与⊙A相交于C,D两点,A,O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点F,连接BD.
(1)求证:△ACG∽△DBG;
(2)求证:AC
2=AG•AB;
(3)若⊙A,⊙O的直径分别为

,15,且CG:CD=1:4,求AB和BD的长.
查看答案
如图,⊙O、⊙P交于点A、B,连接OP交AB于点H,交两圆于点C、D,∠OAP=90°,AP=3,CP=1.求⊙O的半径和AB的长.
查看答案