满分5 > 初中数学试题 >

如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,C...

如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.
求证:
(1)AF∥BE;
(2)△ACP∽△FCA;
(3)CP=AE.

manfen5.com 满分网
(1)由∠B、∠F同对劣弧AP,可知两角的关系,又因BO=PO,△BOP是等腰三角形,求出∠F=∠BPF,得出结论; (2)AC切⊙O于点A,AB是⊙O的直径,证明∠EAP=∠B,故△ACP∽△FCA; (3)由∠CPE=∠BPO=∠B=∠EAP,∠C=∠C,证得三角形相似,列出比例式,可得到等式成立. 证明:(1)∵∠B、∠F同对劣弧AP, ∴∠B=∠F, ∵BO=PO, ∴∠B=∠BPO, ∴∠F=∠BPF, ∴AF∥BE. (2)∵AC切⊙O于点A,AB是⊙O的直径, ∴∠BAC=90°. ∵AB是⊙O的直径, ∴∠BPA=90°, ∴∠EAP=90°-∠BEA,∠B=90°-∠BEA, ∴∠EAP=∠B=∠F, 又∠C=∠C, ∴△ACP∽△FCA. (3)∵∠CPE=∠BPO=∠B=∠EAP,∠C=∠C. ∴△PCE∽△ACP ∴, ∵∠EAP=∠B,∠EPA=∠APB=90°, ∴△EAP∽△ABP. ∴, 又AC=AB, ∴, 于是有. ∴CP=AE.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.
求证:(1)∠CAB=∠BOD;
(2)△ABC≌△ODB.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,∠A=30°,AB是⊙O的直径,过点C作⊙O的切线,交AB延长线于D,CD=3manfen5.com 满分网cm,
(1)求⊙O的直径;
(2)若动点M以3cm/s的速度从点A出发沿AB方向运动,同时点N以1.5cm/s的速度从B点出发沿BC方向运动.设运动的时间为t(0≤t≤2),连接MN,当t为何值时△BMN为直角三角形?并求此时该三角形的面积?

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

manfen5.com 满分网 查看答案
在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点B.点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H.
(1)求圆心C的坐标及半径R的值;
(2)△POA和△PHE随点P的运动而变化,若它们全等,求a的值;若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由).

manfen5.com 满分网 查看答案
已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA:AB=1:2.
(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明;
(3)利用图中已标明的字母,连接线段,找出至少5对相似三角形(不包含全等,不需要证明).(多写者给附加分,附加分不超过3分,计入总分,但总分不超过120分.)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.