满分5 > 初中数学试题 >

如图,⊙O是△ABC的外接圆,∠A=30°,AB是⊙O的直径,过点C作⊙O的切线...

如图,⊙O是△ABC的外接圆,∠A=30°,AB是⊙O的直径,过点C作⊙O的切线,交AB延长线于D,CD=3manfen5.com 满分网cm,
(1)求⊙O的直径;
(2)若动点M以3cm/s的速度从点A出发沿AB方向运动,同时点N以1.5cm/s的速度从B点出发沿BC方向运动.设运动的时间为t(0≤t≤2),连接MN,当t为何值时△BMN为直角三角形?并求此时该三角形的面积?

manfen5.com 满分网
(1)根据圆与切线的位置关系,可知∠BCD=∠A=30°,且AB为直径,可推出AC=CD,再由三角函数关系可得出⊙O的直径. (2)经分析,∠BNM或∠BMN可以为直角,即,此时MN∥AC,有速度关系可列出关系式.再根据面积公式即可算出. 【解析】 (1)连接OC, ∵CD为切线, ∴∠DCO=90° ∵∠A=30°,OA=OC, ∴∠ACO=30° ∵AB是直径, ∴∠ACB=90°,∠OCB=60°, ∴∠BCD=30°,∠ABC=60°, ∴∠BCD=∠A=30°,∠D=30°, ∴∠A=∠D, ∴AC=CD=,即AB=6cm. (2)如图1:当∠BNM=90°时,MN∥AC, ∴,得t=1,即MN恰为△ACB的中位线, ∴=cm2, 当∠BMN=90°时,cos∠MBN=, 即cos60°=,解得t=1.6, 此时,MN=BM=(6-3t)=1.2, S=×1.2×1.2=cm2.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

manfen5.com 满分网 查看答案
在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点B.点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H.
(1)求圆心C的坐标及半径R的值;
(2)△POA和△PHE随点P的运动而变化,若它们全等,求a的值;若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由).

manfen5.com 满分网 查看答案
已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA:AB=1:2.
(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明;
(3)利用图中已标明的字母,连接线段,找出至少5对相似三角形(不包含全等,不需要证明).(多写者给附加分,附加分不超过3分,计入总分,但总分不超过120分.)

manfen5.com 满分网 查看答案
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=manfen5.com 满分网,求BD和BC的长.

manfen5.com 满分网 查看答案
如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;
(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.