满分5 > 初中数学试题 >

阅读材料并解答问题: 与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各...

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.
manfen5.com 满分网
(1)如图1,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=manfen5.com 满分网∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC=manfen5.com 满分网manfen5.com 满分网=60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=manfen5.com 满分网•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如图2,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=4S△OAB=______
(3)如图3,当n=5时,仿照(1)中的方法和过程求S正五边形
(4)如图4,根据以上探索过程,请直接写出S正n边形=______
根据正n边形倍所有的半径分割成了n个全等三角形,只需首先计算其中一个三角形的面积.根据其边心距结合锐角三角函数表示出正多边形的边长,再根据三角形的面积公式进行计算,进一步得到其正多边形的面积. 【解析】 (2)4r2tan45°.(2分) (3)如图,当n=5时,设AB切⊙O于点C,连接OC,OA,OB, ∴OC⊥AB,∵OA=OB, ∵∠AOC=•=36°,OC=r,(3分) ∴AC=r•tan36°,∴AB=2r•tan36°,(4分) ∴S△OAB=•r•2r•tan36°=r2tan36°,(4分) ∴S正五边形=5S△OAB=5r2•tan36°.(6分) (4)nr2tan.(8分)
复制答案
考点分析:
相关试题推荐
如图1,两半径为r的等圆⊙O1和⊙O2相交于M,N两点,且⊙O2过点O1.过M点作直线AB垂直于MN,分别交⊙O1和⊙O2于A,B两点,连接NA,NB.
(1)猜想点O2与⊙O1有什么位置关系,并给出证明;
(2)猜想△NAB的形状,并给出证明;
(3)如图2,若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明.

manfen5.com 满分网 查看答案
如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;
(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围.
manfen5.com 满分网
查看答案
如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).
(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;
(2)问点A出发后多少秒两圆相切?
manfen5.com 满分网
查看答案
如图1,在等腰梯形ABCD中,AB∥DC,AD=BC=4cm,AB=12cm,CD=8cm点P从A开始沿AB边向B以3cm/s的速度移动,点Q从C开始沿CD边向D以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD是平行四边形?
(2)如图2,如果⊙P和⊙Q的半径都是2cm,那么,t为何值时,⊙P和⊙Q外切?
manfen5.com 满分网
查看答案
如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD为矩形;
(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.