满分5 > 初中数学试题 >

如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30...

如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.
(Ⅰ)求∠P的大小;
(Ⅱ)若AB=2,求PA的长(结果保留根号).

manfen5.com 满分网
(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求; (Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC的长. 【解析】 (Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径, ∴PA⊥AB, ∴∠BAP=90°; ∵∠BAC=30°, ∴∠CAP=90°-∠BAC=60°. 又∵PA、PC切⊙O于点A、C, ∴PA=PC, ∴△PAC为等边三角形, ∴∠P=60°. (Ⅱ)如图,连接BC,则∠ACB=90°. 在Rt△ACB中,AB=2,∠BAC=30°, ∵cos∠BAC=, ∴AC=AB•cos∠BAC=2cos30°=. ∵△PAC为等边三角形, ∴PA=AC, ∴PA=.
复制答案
考点分析:
相关试题推荐
已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).
在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.
(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;
(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD,求sin∠CAB的值;
②若manfen5.com 满分网=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,P是AB的延长线上的一点,PC切⊙O于点C,⊙O的半径为3,∠PCB=30度.
(1)求∠CBA的度数;(2)求PA的长.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
如图,AB是圆O的弦,直线DE切圆O于点C,AC=BC,
求证:DE∥AB.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,点P为BA延长线上一点,PC为⊙O的切线,C为切点,BD⊥PC,垂足为D,交⊙O于E,连接AC、BC、EC.
(1)求证:BC2=BD•BA;
(2)若AC=6,DE=4,求PC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.