满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MB...

如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网
(1)需证△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形; (2)可证△BPM∽△CQP,,PC=x,MQ=y,BP=4-x,QC=4-y,,即可得出y=-x+4; (3)应考虑四边形ABPM和四边形MBPD均为平行四边形,四边形MPCD和四边形APCM均为平行四边形时的情况;由(2)中的函数关系,可得当y取最小值时,x=PC=2,P是BC的中点,MP⊥BC,而∠MPQ=60°,∠CPQ=30°,∠PQC=90°. (1)证明:∵△MBC是等边三角形, ∴MB=MC,∠MBC=∠MCB=60°.(1分) ∵M是AD中点, ∴AM=MD. ∵AD∥BC, ∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°. ∴△AMB≌△DMC.(2分) ∴AB=DC. ∴梯形ABCD是等腰梯形.(3分) (2)【解析】 在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°, ∴∠BMP+∠BPM=∠BPM+∠QPC=120°. ∴∠BMP=∠QPC.(4分) ∴△BPM∽△CQP. ∴.(5分) ∵PC=x,MQ=y, ∴BP=4-x,QC=4-y.(6分) ∴. ∴y=-x+4.(7分) (3)【解析】 ①当BP=1时,则有BPAM,BPMD, 则四边形ABPM为平行四边形, ∴MQ=y=×32-3+4=.(8分) 当BP=3时,则有PCAM,PCMD, 则四边形MPCD为平行四边形, ∴MQ=y=×12-1+4=.(9分) ∴当BP=1,MQ=或BP=3,MQ=时, 以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.(10分) ②△PQC为直角三角形.(11分) ∵y=(x-2)2+3, ∴当y取最小值时,x=PC=2.(12分) ∴P是BC的中点,MP⊥BC,而∠MPQ=60°, ∴∠CPQ=30°, ∴∠PQC=90°. ∴△PQC是直角三角形.(13分)
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=manfen5.com 满分网S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=x2+bx+c,经过点A(0,5)和点B(3,2)
(1)求抛物线的解析式:
(2)现有一半径为l,圆心P在抛物线上运动的动圆,问⊙P在运动过程中,是否存在⊙P与坐标轴相切的情况?若存在,请求出圆心P的坐标;若不存在,请说明理由;
(3)若⊙Q的半径为r,点Q在抛物线上,且⊙Q与两坐轴都相切时,求半径r的值.
查看答案
在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,manfen5.com 满分网),E(0,-6).从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB.(如图所示)
(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(manfen5.com 满分网,0)且与OE平行,现正方形以每秒manfen5.com 满分网的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.