满分5 > 初中数学试题 >

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O...

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

manfen5.com 满分网
(1)根据抛物线的顶点P到轴的距离是4,抛物线与x轴相交于O、M两点,OM=4,知点P的横坐标是OM的一半,即2;点P的纵坐标是4.点M的坐标是(4,0).根据点P的坐标可以运用顶点式求函数的解析式,再进一步把点M的坐标代入即可. (2)设C(x,0),则B(4-x,0),D(x,4x-x2),A(4-x,4x-x2).分别表示出矩形的长和宽,再进一步根据矩形的周长公式进行计算.然后根据二次函数的最值方法进行求解; (3)根据等腰三角形的定义,可以考虑OP当底时,共有4个点符合条件. 【解析】 (1)根据题意,得P(2,4);M(4,0). 设抛物线的解析式为:y=a(x-2)2+4, 过点M(4,0),则4a+4=0, ∴a=-1,y=-(x-2)2+4=4x-x2,即y=-x2+4x; (2)设C(x,0), 则B(4-x,0),D(x,4x-x2),A(4-x,4x-x2). ∵l=2(BC+CD) =2[(4-2x)+(4x-x2)] =2(-x2+2x+4) =-2(x-1)2+10, ∵当x=1时,l有最大值,即l最大值=10; (3)存在.应该一共存在4个点,OP的垂直平分线与抛物线有两个交点, 以O为圆心,OP为半径作圆,圆与抛物线也有两个交点(除P点以外), 这四个点都符合题意.
复制答案
考点分析:
相关试题推荐
已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A、B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.
(1)求实数k的取值范围;
(2)设OA、OB的长分别为a、b,且a:b=1:5,求抛物线的解析式;
(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.
查看答案
如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2=4,manfen5.com 满分网
(1)分别求出A,B两点的坐标;
(2)求此抛物线的函数解析式;
(3)设此抛物线与y轴的交点为C,过manfen5.com 满分网作直线l与抛物线交于另一点D(点D在x轴上方),连接AC,CB,BD,DA,当四边形ACBD的面积为4时,求点D的坐标和直线l的函数解析式.

manfen5.com 满分网 查看答案
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A的坐标是(-1,0),与y轴负半轴交于点C,其对称轴是直线x=manfen5.com 满分网,tan∠BAC=2.
(1)求二次函数y=ax2+bx+c的解析式;
(2)作圆O’,使它经过点A、B、C,点E是AC延长线上一点,∠BCE的平分线CD交圆O’于点D,连接AD、BD,求△ACD的面积;
(3)在(2)的条件下,二次函数y=ax2+bx+c的图象上是否存在点P,使得∠PDB=∠CAD?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y1=x2-2x+c的部分图象如图1所示.
(1)求c的取值范围;
(2)若抛物线经过点(0,-1),试确定抛物线y1=x2-2x+c的解析式;
(3)若反比例函数manfen5.com 满分网的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y1与y2的大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.